PHYSICAL PROGRESS REPORT OF THE PARB PROJECT NO. 193 (01-06-2010 TO 31-05-2017)

GENETIC IMPROVEMENT OF SUGARCANE FOR HERBICIDE AND BORER RESISTANCE

Project Manager

DR IDREES AHMAD NASIR

CENTER OF EXCELLENCE IN MOLECULAR BIOLOGY LAHORE.

PHYSICAL PROGRESS REPORT FOR PARB CGS PROJECT

(01 June 2010 to 31 May 2017)

A. Basic Information

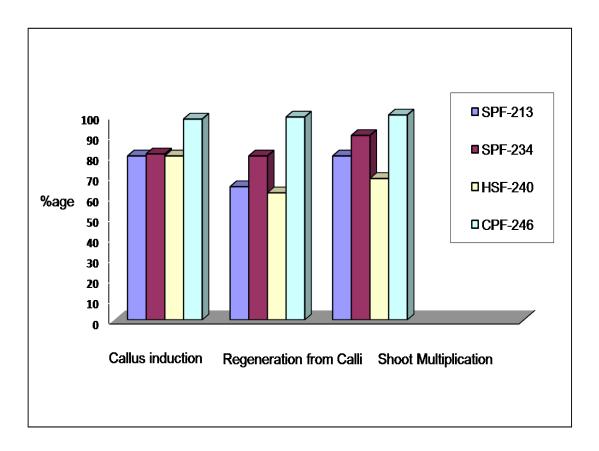
1.	Name of the project	Genetic Improvement of Sugarcane for Herbicide and Borer Resistance.
2.	Project No.	PARB Project No 193
3.	Total Project cost	Rs. 22.350 million
4.	Total project duration	Five Years
5.	Funds released so far	
6.	Project commencement Date	1-06-2010
7.	Name of the Project Manager or	Dr, Idrees Ahmad Nasir
	Team Leader with designation	

B. Physical Research Achievements

Output/Activity	Description	Planned Start date	Planned Completio n date	Achievement Indicator as planned	Achievements (Please attach data in brief as annexure if activity completed)	Reasons for deviation if any
Component objective	Development of transgenic Sugarcane tolerant to Borers and Glyphosate herbicide through incorporation of CEMB- Bt and GTGene via gene gun in four elite sugarcane cultivars and Pilot scale propagation of two of the transgenic sugarcane cultivars i.e. HSF 240 and CPF- 246.	01.06. 10	30.5. 17	HSF 240, SPF 234, SPF 213 and CPF 246 sugarcane cultivars containing herbicide tolerant gene and additional Bt gene in CPF 246 will be available.	Completed	Annexure-I
Output-1	Bt and GTGene transformation in sugarcane cultivars HSF 240, SPF 234, SPF 213 and CPF 246.	01.02. 15	30.11.15	HSF 240, SPF 234, SPF 213 and CPF 246 sugarcane cultivars containing herbicide tolerant gene and Bt gene (in CPF 246) will be available.	Completed	Annexure-I

Activity-1	Transformation of sugarcane cultivars by biolistic gun with	15.02.15	10.05. 15	10 transformed calli plates per variety will be available.		
	CEMB-Bt and GTGene (at least 10 events) in appx.100 calli per cultivar.				Completed	Annexure-I
Activity-2	Regeneration of Putative transgenic sugarcane plants.	15.3.15	30.07.15	100 regenerated sugarcane plants from transformed calli of each variety will be available.	Completed	Annexure-I
Activity-3	Delivery of Sugarcane to SRI containing CEMB-Bt & GTGene and maintenance for micro propagation at CEMB.	1.10.15	30.11.15	100 plantlets of each cultivar with multiple shoots containing CEMB-Bt & GTGene will be delivered to SRI.	Completed	Annexure-I
Output-2	Confirmation of transgenic sugarcane lines via molecular analyses and bioassays.	15.5.15	15.05. 17	Positive transgenic sugarcane plants of cultivars, HSF-240, SPF 234, SPF 213 and CPF 246.	Completed PCR for GTG is done detail is attached as Annex-01)	Annexure-I
Activity-1	Bioassay, ELISA and PCR analysis of transgenic plants during regeneration, in-vitro multiplication, green house evaluation, field trials.	5.3.16	15.3.17	Confirmation of Integration of transgenes in plant genome, their multiplication and efficacy of Bt and GTGene in transgenic plants.	Completed Bioassay for GTG of 10 Transgenic plant of CPF- 246 and ELISA of the positive plants is performed (Annex-01). Multiplication of Transgenic Plants is in progress.	Annexure-I
Activity-2	Southern analyses of transgenic plants during in-vitro multiplication, green house evaluation, field trials.	1.1.17	15.3.17	Copy number of gene/ genome and multiplication of transgenic plants	Completed	Annexure-I
Output 3	Bio-safety Assessments of CEMB-Bt and GTGene transformed cultivars HSF240, CPF 246, SPF-213 and SPF-234	1/4/2016	1/5/2017	Data for bio-safety study will be available	Completed	Annexure-I

Activity 1	Study of Horizontal Gene flow to	1/4/2016	1/4/2017	Data for Horizontal gene flow	Completed	Annexure-I
	evaluate the presence of CEMB-			will be available	Horizontal gene flow	
	Bt and GTGene protein in soil, its				was studied for	
	kinetics and effect on soil				transformed cultivars	
	organisms.				HSF240, CPF 246, SPF-213	
					and SPF-234 in field for	
					presence of CEMB Bt and	
					GTGenes.(Attach as	
A .: :: 2	C. I CELLE CELLE D. I	4 /4/2046	4/5/2047	D . ((. (C514D D)	Annex-01)	
Activity 2	Study of Effect of CEMB-Bt and	1/4/2016	1/5/2017	Data for effect of CEMB-Bt and	Completed	Annexure-I
	GTGene on non target insects			GTGene on non target insects	No non target insects	
				will be available.	were found dead in	
					sugarcane field.	
Activity 3	Study of effect of CEMB-Bt and	1/4/2016	1/5/2017	Data for effect of CEMB-Bt and	Completed	Annexure-I
	GTGene protein on Animals			GTGene on Animals (Mice)	+ive Transgenic Plants	
	(Mice)			insects will be available.	were fed to animals and	
	, ,				found no significant	
					effect of CEMB Bt and	
					GTGene on Target	
					animals	


Signature of Project Manager/Team Leader

Annexure-1

Selected Sugarcane Cultivars

Variety	Year of Release	Maturity	Cane Yield (t/ha)	Sugar Recovery(%)
SPF-213	2000	Mid	100	11.0
SPF-234	2002	Early	100	11.6
HSF-240	2002	Early	95	11.7
CPF-246	2011	Mid	105	12.0

Varietal tissue culture response after optimized tissue culture conditions

Figure: 1 Comparison b/w four sugarcane varieties (SPF-213, SPF-234, HSF-240, and CPF-246) on the basis of their growth responses at three different stages during tissue culturing.

Fig2: Physical Mapping of CEMB-Cry1Ac, Cry2A and CEMB-GTG genes cloned in plant expression vectors for transformation in sugarcane (in this study)

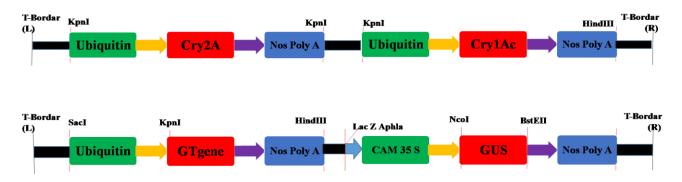
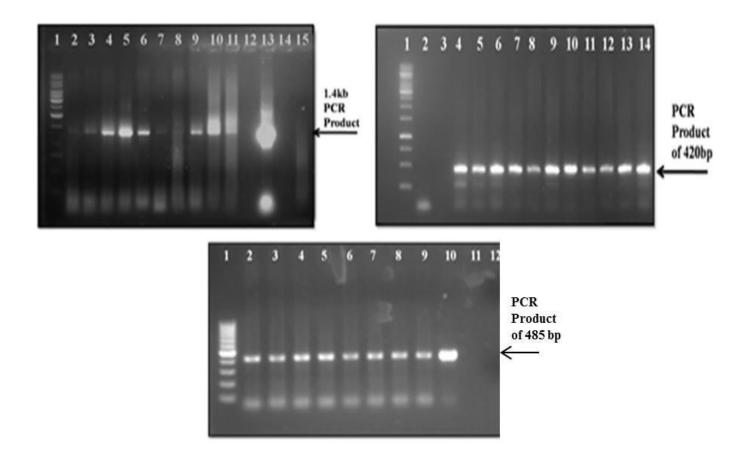



Fig3: Transformation of two Bt and GTG genes in sugarcane varieties (SPF-213, SPF-234, HSF-240, and CPF-246)

A. Amplification of GTgene in Transgenic sugarcane Lane 1: 1kb DNA Ladder, Lane 2-11: GTG Positive Lines, Lane 13: Positive Control and Lane 15: Non-transgenic Negative Control. B. Amplification of Cry1Ac gene in transgenic sugarcane Lane 1:1kb DNA Ladder, Lane 2: Non-transgenic negative control Lane, 4-13: Cry1Ac positive lines and Lane 14: Positive control. C. Amplification of Cry2Ac gene in transgenic sugarcane Lane 1: 100bp DNA Ladder Lane, 2-9: Cry2Ac positive lines, Lane 10: Positive control and Lane 12: Non-transgenic negative Control.

Table 1: Total distribution of sugarcane plants at different stages of Research

Variety	Total No of Calli bombarded	No of call survived on Kanamycine Selection (%)	GUS positive callus	No of calli survived on kanamycine + glyphosate selection(%)	No of calli regenerated on selection medium (%)	No. of plantlets after multiplication	In process of accilmatization	In tubes on rooting media	Shifted to green house in pots	Survived in pots After Spray	in field	In fleid after glyphosate spray	Total tested	Positive for Cry1Ac	Positive for Cry2A	Positive for GTG	positive plants for three genes	Transgenic plants survived in field after Glyphosate Spray
SPF-213	100	70	70	34	21	1000	800	752	656	200	122	54	53	18	10	12	15	11
SPF-234	100	74	74	40	32	1500	1000	780	725	250	141	90	86	15	17	16	27	14
HSF-240	100	45	45	29	13	300	220	205	125	75	60	40	37	8	9	5	11	10
CPF-246	100	91	90	81	48	2500	1800	1724	1630	900	751	300	160	30	20	15	21	11
										Tota	d		336	71	56	48	74	46

Table 2: Transformation efficiency on the basis of calli survived on selected media

Variety	No. of	calli	Control	No. of calli survived on	transformation
	bombarded			selection media	efficiency
HSF-240	100		10	29	29%
CPF-246	100		10	81	81%

Transformation efficiency in HSF-240 = 29%

Transformation efficiency in CPF-246 = 81%

Table 3: Transformation efficiency on the basis of calli regenerated on selected media

Variety	No. of	calli	Control	No. of calli regenerated	transformation
	bombarded			on selection media	efficiency
HSF-240	100		10	13	13%
CPF-246	100		10	48	48%

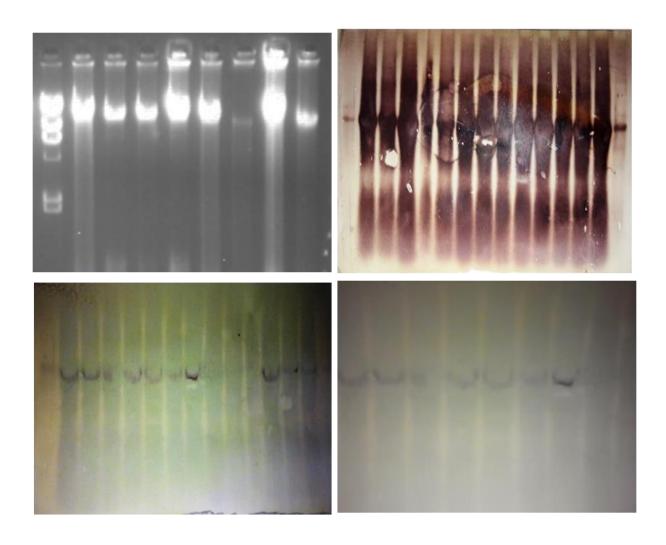
Transformation efficiency in HSF-246 = 13%

Transformation efficiency in CPF-246 = 48%

Fig4: Field Evaluation and confirmation of transgenic cotton plants containing Cry1Ac+Cry2A and GTG in local sugarcane at V0 generation through PCR.

Table 4: Determination of Purity ratio of double Bt genes in Transgenic Sugarcane Variety
HSF-240 through PCR

Plants Name	GTG PCR	Cry1Ac PCR	Cry2A PCR
	amplification	amplification	amplification
HSF-L (1)	Positive	Positive	Positive
HSF-L(2)	Positive	Positive	Positive
HSF-L (3)	Positive	Positive	Positive
HSF-L (4)	Positive	Positive	Positive
HSF-L (5)	Positive	Positive	Positive
HSF-L (6)	Positive	Positive	Positive
HSF-L (7)	Positive	Positive	Positive
HSF-L (8)	Positive	Positive	Positive
HSF-L (9)	Positive	Positive	Positive
HSF-L (10)	Positive	Positive	Positive
Negative control	Negative	Negative	Negative
Positive control	Positive	Positive	Positive


Table5: Determination of Purity ratio of double Bt genes in Transgenic Sugarcane Variety

CSF-246 through PCR

Plants Name	GTG PCR amplification	Cry1Ac PCR amplification	Cry2A PCR amplification
CPF-L (1)	Positive	Positive	Positive
CPF -L(2)	Positive	Positive	Positive

CPF -L (3)	Positive	Positive	Positive
CPF -L (4)	Positive	Positive	Positive
CPF -L (5)	Positive	Positive	Positive
CPF -L (6)	Positive	Positive	Positive
CPF -L (7)	Positive	Positive	Positive
CPF -L (8)	Positive	Positive	Positive
CPF -L (9)	Positive	Positive	Positive
CPF -L (10)	Positive	Positive	Positive
CPF -L (11)	Positive	Positive	Positive
Negative control	Negative	Negative	Negative
Positive control	Positive	Positive	Positive

Fig6: Southern Blot Analysis For CEMB-GTG, CEMB-Cry1Ac,CEMB-Cry2A in transgenic sugarcane varieties

A. Genomic DNA isolaton B. GTG-Southern C.Cry1Ac-Southern D. Cry2A-Southern

Fig7: Determination of Crude protein of Bt and GTGene through Bradford assay

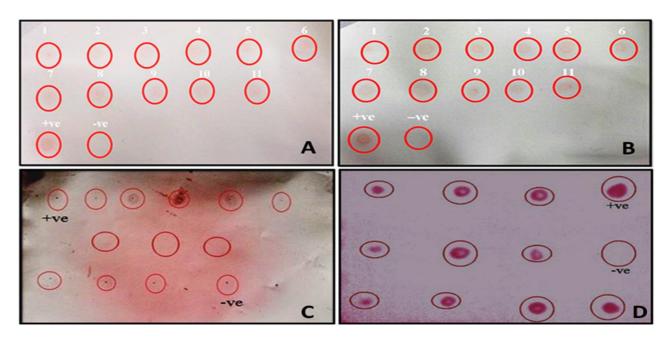
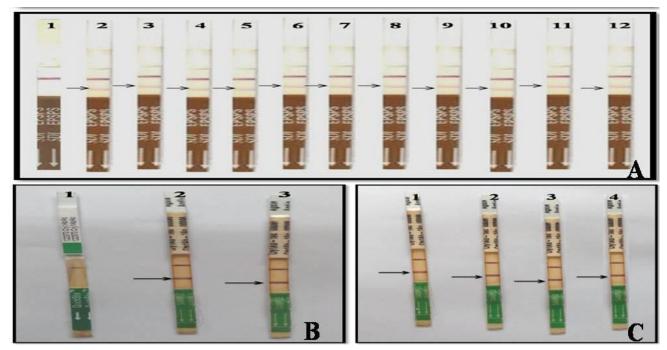


Table 6: : Concentration of Crude Protein in Transgenic plants (HSF-240) by Bradfrd Assay						
Serial No.	Plant Name	Protein Extraction	Concentration of Protein (µg/mL)			
1	HSF240-L (3)	Extracted	270			
2	HSF240-L(16)	Extracted	180			
3	HSF240-L (22)	Extracted	230			
4	HSF240-L (54)	Extracted	210			
5	HSF240-L (55)	Extracted	270			
6	HSF240-L (61)	Extracted	150			
7	HSF240-L (67)	Extracted	180			
8	HSF240-L (72)	Extracted	230			
9	HSF240-L (74)	Extracted	190			
10	HSF240-L (82)	Extracted	140			


Table: Concentration of Crude Protein in Transgenic plants (HSF-240) by Bradford Assay				
Serial No.	Plant Name	Protein Extraction	Concentration of Protein (µg/mL)	
1	CPF246-L (2)	Extracted	220	
2	CPF 246-L(18)	Extracted	280	
3	CPF 246-L (24)	Extracted	190	
4	CPF 246-L (51)	Extracted	160	
5	CPF 246-L (53)	Extracted	230	
6	CPF 246-L (55)	Extracted	180	

7	CPF 246-L (67)	Extracted	160
8	CPF 246-L (69)	Extracted	190
9	CPF 246-L (71)	Extracted	220
10	CPF 246-L (76)	Extracted	170
11	CPF 246-L (81)	Extracted	178

Fig8: Protein Dot Blot of sugarcane transgenic plants

Protein Dot Blot of A, B) CEMB-GTG, C) CEMB-CrylAc D) CEMB-Cry2A

A.GTG qualitative protein expression through Dipsticks under Ubiquitin promoter, 1: Negative control, 2-12: Positive assay of GTG Dipstick. B.: GTG qualitative protein expression through Dipsticks under with CaMV 35S promoter, Negative Control, 2-12: Positive assay of GTG Dipstick. C. CrylAc qualitative protein expression through Dipsticks with Ubiquitin Promoter, 1: Negative control, 2-3: Positive assay of CrylAc. D. CrylAc protein qualitative expression through Dipsticks with CaMV 35S promoter, 1-4: Positive assay of CrylAc Dipstick.

Fig.10: Bio Toxicity Leaf assay after 80-days

13

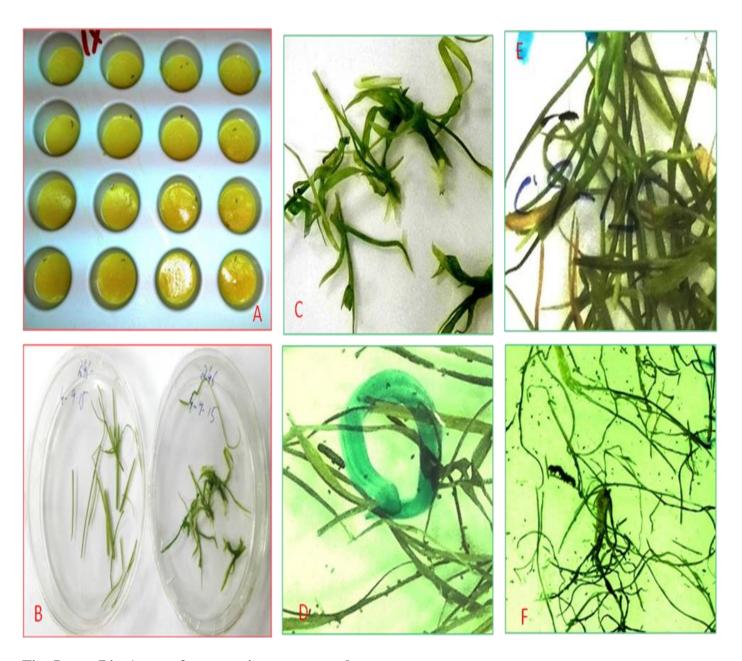


Fig: Insect Bio-Assay of transgenic sugarcane plants

- A: Insect Chilo infuscatellus from CEMB-insectory Lab
- B: Transgenic sugarcane plant leaf after 80 days
- C: Chilo infuscatellus insect with transgenic leaf
- D: Cane Borer dead, 4th day of infestation with single gene Cry1Ac
- E: Cane Shoot Borer Died on 2^{nd} day with infestation of double BT genes leaf
- F. Insect is healthy with non transgenic Control sugarcane plant Leaf

Fig.11: Quantification of Cry1A protein in transgenic sugarcane plants of varieties during field evaluation

Fig: A1: Non transgenic plant Control, with Buffer

B1: Positive controls given in kit

Fig.12: Quantification of Cry2A protein in transgenic sugarcane plants of varieties during field evaluation.

Fig: A1: Non transgenic plant Control, with Buffer

B1: Positive controls given in kit

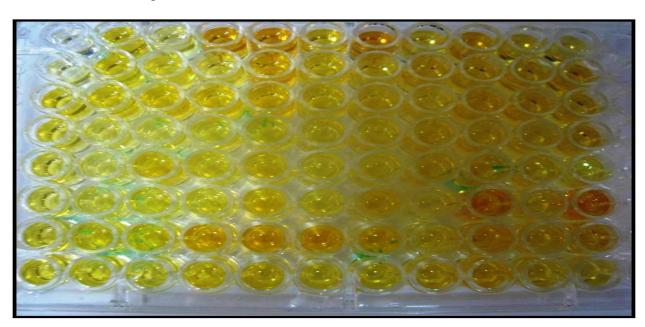


Fig.13: Quantification of GTG protein in transgenic sugarcane plants of varieties during field evaluation

Fig: A1: Non transgenic plant Control, with Buffer

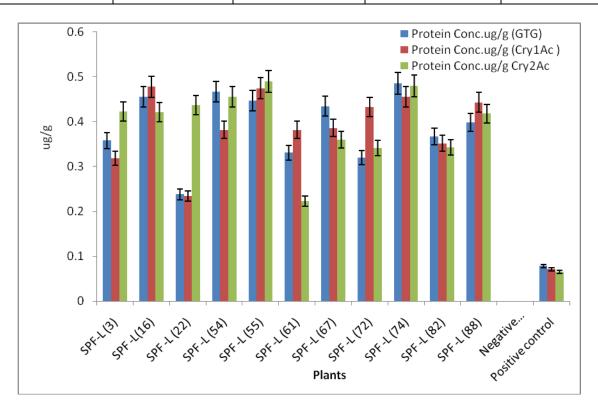

B1: Positive controls given in kit

Table :Quantification of Cry1Ac, Cry2A and GTG protein in putative transgenic sugarcane plants of HSF-240 through ELISA at T0 generation

Plants Name	Protein	Protein	Protein	Result
	Conc.ug/g	Conc.ug/g	Conc.ug/g	
	(GTG)	(Cry1Ac)	Cry2Ac	
HSF-L (3)	0.358	0.319	0.423	Plant have two Bt and GTG protein
HSF -L(16)	0.456	0.478	0.421	Plant have two Bt and GTG protein
HSF -L (22)	0.238	0.234	0.437	Plant have two Bt and GTG protein

HSF -L (54)	0.467	0.382	0.456	Plant have two Bt and GTG protein
HSF -L (55)	0.447	0.475	0.490	Plant have two Bt and GTG protein
HSF -L (61)	0.331	0.382	0.223	Plant have two Bt and GTG protein
HSF -L (67)	0.435	0.386	0.360	Plant have two Bt and GTG protein
HSF -L (72)	0.320	0.4327	0.341	Plant have two Bt and GTG protein
HSF -L (74)	0.486	0.456	0.480	Plant have two Bt and GTG protein
HSF -L (82)	0.367	0.352	0.343	Plant have two Bt and GTG protein
HSF -L (88)	0.398	0.443	0.418	Plant have two Bt and GTG protein
Negative control	0.00	0.00	0.00	-
Positive control	0.078	0.071	0.065	-

Quantification of Cry1Ac, Cry2A and GTG protein in putative transgenic sugarcane plants of CPF-246 through ELISA at T0 generation

Plants Name	Protein	Protein	Protein Conc.ug/g	Result
	Conc.ug/g	Conc.ug/g	Cry2Ac	
	(GTG)	(Cry1Ac)		
CPF-L (2)	0.252	0.415	0.314	Plant have two Bt and GTG protein
CPF -L(18)	0.320	0.360	0.278	Plant have two Bt and GTG protein
CPF -L (24)	0.322	0.431	0.345	Plant have two Bt and GTG protein
CPF -L (51)	0.425	0.356	0.401	Plant have two Bt and GTG protein
CPF -L (53)	0.436	0.460	0.421	Plant have two Bt and GTG protein
CPF -L (55)	0.334	0.241	0.241	Plant have two Bt and GTG protein
CPF -L (67)	0.227	0.426	0.430	Plant have two Bt and GTG protein
CPF -L (69)	0.480	0.447	0.567	Plant have two Bt and GTG protein
CPF -L (71)	0.348	0.252	0.322	Plant have two Bt and GTG protein
CPF -L (76)	0.386	0.351	0.400	Plant have two Bt and GTG protein
CPF -L (81)	0.378	0.451	0.511	Plant have two Bt and GTG protein
Negative control	0.00	0.00	0.00	-
Positive control	0.058	0.032	0.056	-

Fig.14: A: Weeds growing along with transgenic sugarcane in the field

B: Glyphosate spray assay of transgenic sugarcane plants (GTGene) at the rate of 1300 ml/acre at T0 generation. Weeds dead.

Fig.15: Estimation of Crude protein of Bt and GTGene through Bradford assay in transgenic sugarcane V1 gertation

Table: Concentra	Table: Concentration of Crude Protein having CaMV 35S Promoter by Bradford Assay				
Serial No.	Variety	Plant Name	Concentration of Protein (µg/mL)		
1	234	234-1	270		
2	234	234-2	180		
3	234	234-3	230		
4	234	234-4	210		
5	234	234-5	270		
6	240	240-6	150		
7	240	240-7	180		
8	240	240-8	230		
9	213	213-9	190		
10	213	213-10	140		
11	213	213-11	110		

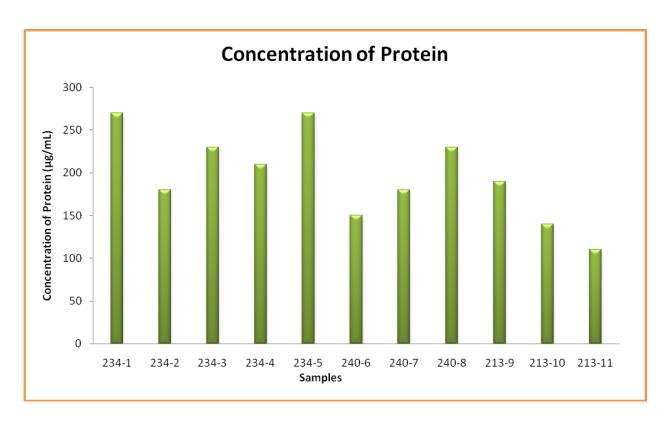


Fig.16: Graph for Concentration of Crude Protein in Transgenic Plant by Bradford Assay

Table 4.2: Conc	entration of Crude F	Protein having Ubiquitin	n Promoter by Bradford Assay
Serial No.	Variety	Plant Name	Concentration of Protein (µg/mL)
1	234	234-1	50
2	234	234-2	70
3	234	234-3	190
4	234	234-4	160
5	234	234-5	130
6	240	240-6	110
7	240	240-7	130
8	240	240-8	90
9	213	213-9	70
10	213	213-10	160
11	213	213-11	90

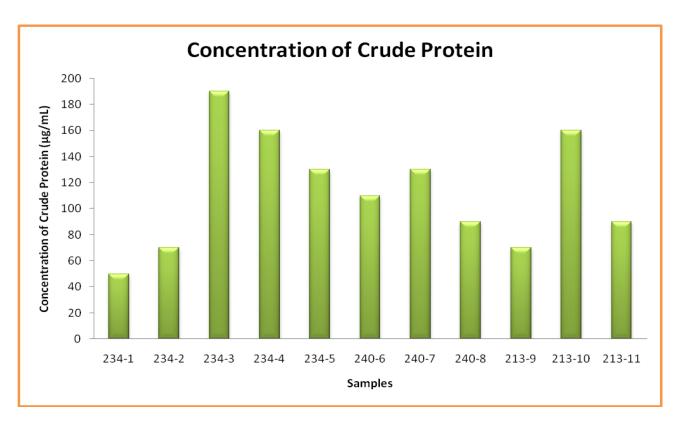
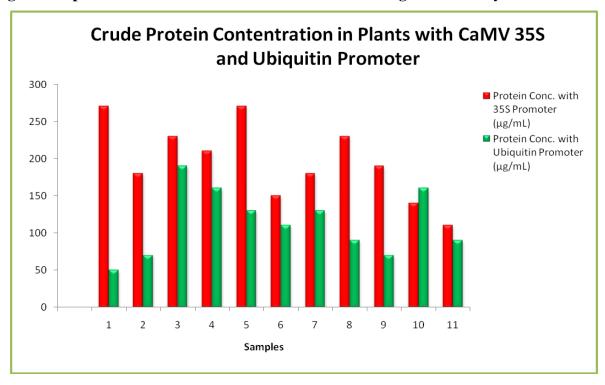



Fig.17: Graph for Concentration of Crude Protein in Transgenic Plants by Bradford Assay

Table: EL Sugarcane		ein with CaMV 35S	Promoter in Transgenic
Well No.	Plant Name	Optical Density (OD) at 450 nm	ELISA GTG
1	Negative Control	0.072	-
2	Positive Control	2.179	-
3	234-1	1.802	Positive
4	234-2	2.042	Positive
5	234-3	2.906	Positive
6	234-4	3.674	Positive
7	234-5	2.284	Positive
8	240-6	1.831	Positive
9	240-7	1.655	Positive
10	240-8	2.657	Positive
11	213-9	3.732	Positive
12	213-10	3.534	Positive
13	213-11	2.418	Positive

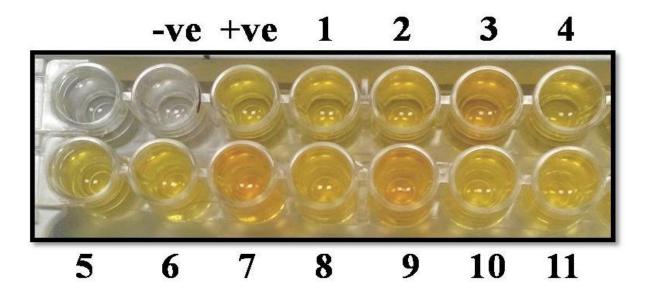


Fig 18: DAS-ELISA of GTG Protein with 35S Promoter in Transgenic Sugarcane Plants

Well 1: Negative Control

Well 2: Positive Control

Well 4-14: GTG ELISA Positive Plants

Table: ELISA for GTG Protein with Ubiquitin Promoter in Transgenic Sugarcane Plants				
Well No.	Plant Name	Optical Density (OD) at 450 nm	ELISA GTG	
1	Negative Control	0.072	-	
2	Positive Control	2.179	-	
3	234-1	0.944	Positive	
4	234-2	0.333	Positive	
5	234-3	0.336	Positive	
6	234-4	0.442	Positive	
7	234-5	0.658	Positive	
8	240-6	1.884	Positive	
9	240-7	0.543	Positive	
10	240-8	0.783	Positive	
11	213-9	0.664	Positive	
12	213-10	0.492	Positive	
13	213-11	0.325	Positive	

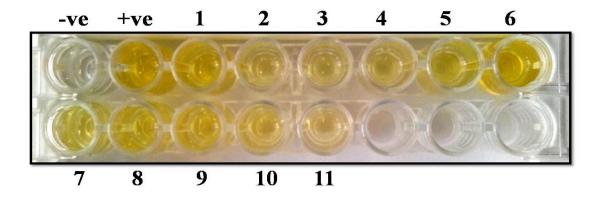
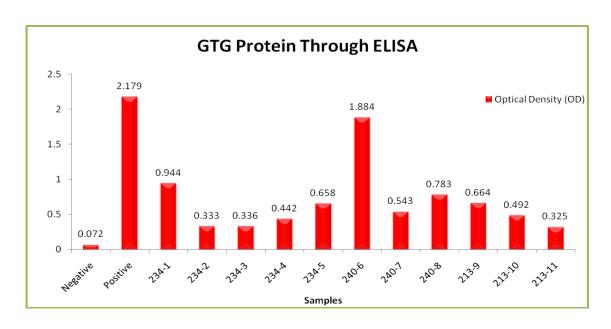



Fig. 19: DAS-ELISA of GTG Protein with Ubiquitin Promoter in Transgenic Sugarcane Plants

Well 1: Negative Control

Well 2: Positive Control

Well 3-13: GTG ELISA Positive Plants

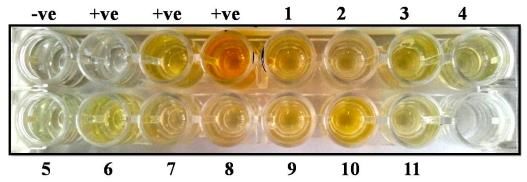


Fig.21: DAS-ELISA of Cry1Ac Protein under CaMV 35S Promoter in Transgenic Sugarcane Plants

Well 1: Negative Control

Well 2-4: Positive Control of different Concentrations

Well 5-15: Cry1Ac ELISA Positive Plants

Table: E	Table: ELISA for Cry1Ac under CaMV 35S Promoter of Transgenic Sugarcane Plants					
Well No.	Plant Name	Optical Density (OD) at 450 nm	Concentration of Cry1Ac Protein (µg/gm)	ELISA Cry1Ac		
1	Negative Control	0.068	0	-		
2	Positive Control	0.071	0	-		
3	Positive Control	0.796	0.314	-		
4	Positive Control	1.459	0.602	-		
5	234-1	3.43	0.656	Positive		
6	234-2	1.48	0.572	Positive		
7	234-3	0.88	0.352	Positive		
8	234-4	1.42	0.567	Positive		
9	234-5	3.412	0.627	Positive		
10	240-6	0.826	0.327	Positive		
11	240-7	0.817	0.323	Positive		
12	240-8	1.173	0.477	Positive		
13	213-9	3.42	0.615	Positive		
14	213-10	0.873	0.348	Positive		
15	213-11	0.893	0.356	Positive		

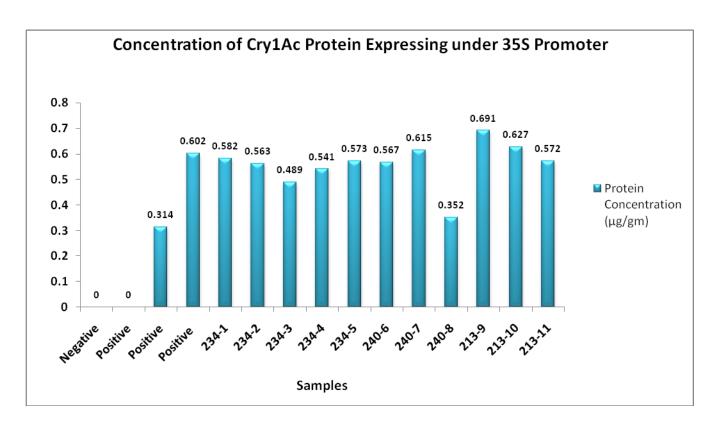


Fig.22: Graph Showing Concentration of Cry1Ac Protein under CaMV 35S Promoter in Transgenic Sugarcane Plants

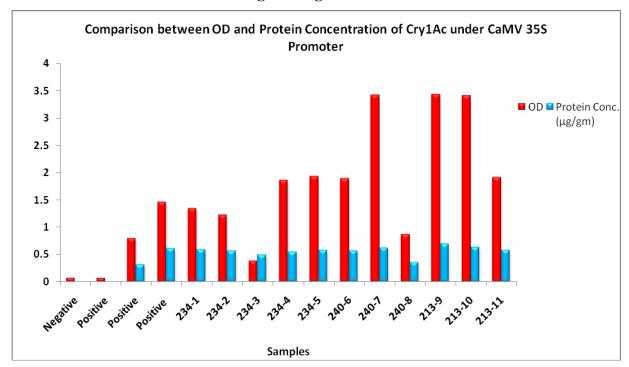


Fig.23: Graph for Showing Co-relation between OD and Concentration of Cry1Ac Protein Expressing under CaMV 35S Promoter

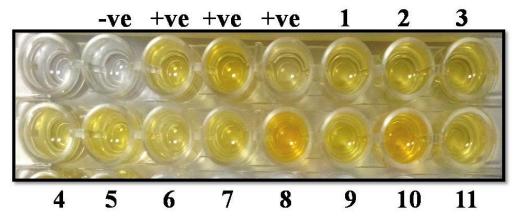
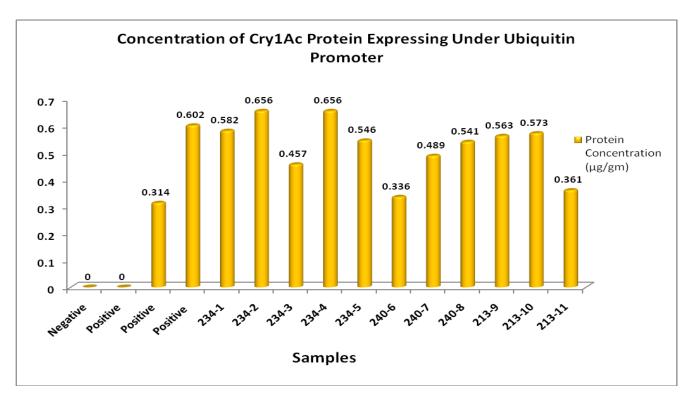


Fig.24: DAS-ELISA of Cry1Ac Protein with Ubiquitin Promoter in Transgenic Sugarcane Plants


Well 2: Negative Control

Well 3-5: Positive Control of different Concentrations

Well 6-16: Cry1Ac ELISA Positive Plants

Table : EI	Table: ELISA for Cry1Ac with Ubiquitin Promoter of Transgenic Sugarcane Plants					
Well No.	Plant Name	Optical Density (OD) at 450 nm	Concentration of Cry1Ac Protein (µg/gm)	ELISA Cry1Ac		
1	Negative Control	0.068	0	-		
2	Positive Control	0.073	0	-		
3	Positive Control	0.796	0.314	-		
4	Positive Control	1.459	0.602	-		
5	234-1	1.52	0.582	Positive		
6	234-2	3.42	0.656	Positive		
7	234-3	1.167	0.457	Positive		
8	234-4	3.44	0.656	Positive		
9	234-5	1.33	0.546	Positive		
10	240-6	0.817	0.336	Positive		
11	240-7	1.18	0.489	Positive		
12	240-8	1.32	0.541	Positive		
13	213-9	1.401	0.563	Positive		

14	213-10	1.93	0.573	Positive
15	213-11	0.904	0.361	Positive

Fig.25: Graph Showing Concentration of Cry1Ac Protein with Ubiquitin Promoter in Transgenic plants

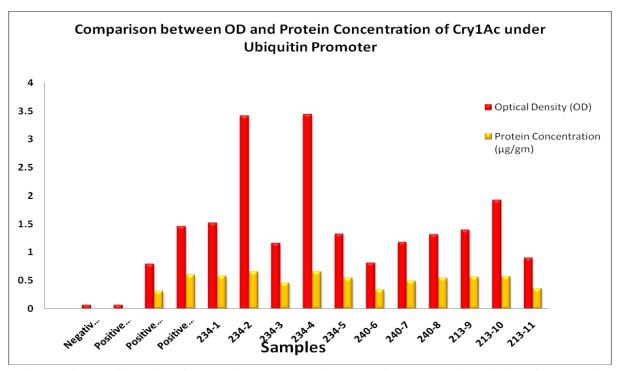


Fig.26: Graph Showing Co-relation between OD and Concentration of Cry1Ac Protein

Expressing under Ubiquitin Promoter

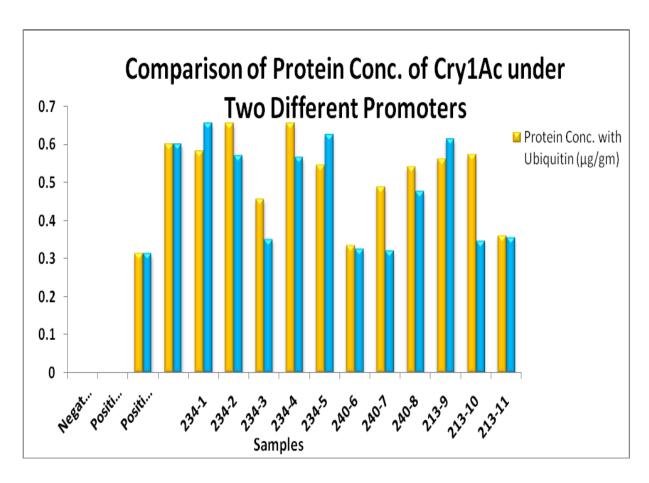


Fig.27: Graph Showing Comparison of Cry1Ac Protein Concentration Expressing under Ubiquitin and CaMV 35S Promoter

A: Weeds growing along with transgenic sugarcane in the field

B: Glyphosate spray assay of transgenic sugarcane plants (GTGene) at the rate of 1300ml/acre at T0 generation. Weeds dead.

Five Lines with three genes (CEMB-Cry1Ac,CEMB- Cry2A, and CEMBGTGene) of transgenic sugarcane free of borers selected from the field trials.

Five lines from 21 are free of any kind insect attack (Stem, Root and Top borers) 4L/2, 5L/4, 8L/4, 6L/5

Outcomes of Project:

Development of Product

Sugarcane sets of HSF 240, SPF 234, SPF 213 and CPF 246 sugarcane cultivars containing herbicide tolerant gene and additional Bt gene in CPF 246 were handed over to SRI for multiplication.

Published 4 articles in world reputed journal

- a. Nasir, I. A., Tabassum, B., Qamar, Z., Javed, M. A., Tariq, M., Farooq, A. M., Butt, S. J., Qayyum, A., Husnain, T., (2014). Herbicide-tolerant sugarcane (Saccharum officinarum L.) plants: an unconventional method of weed removal. Turk J Biol 38: 439-449.
- b. Qamar, Z., Riaz, S., Nasir, I. A., Ali, Q. and Husnain, T. (2015). Transformation and Transgenic Expression studies of Glyphosate tolerant and Cane Borer Resistance Genes in Sugarcane (Sccharum officinarum L.), Molecular Plant Breeding, 6(12) 1-17.
- **c.** Qamar, Z., Nasir, I. A., Riaz, S., Ali, Q. and Husnain, T. (2016). Molecular cloning, transformation and evaluation of different transgenic sugarcane lines for GTGene and Cry1Ac gene. 51(1): Cytology and Genetics.
- **d.** Hameed, A., Nasir, I. A., Tabassum, B., Qamar, Z., Younus, M., Rao, A. Q., Rashid, B., Tariq, M., Zameer, M., Khan, G. A., Ali, M., Anjum, M. S., Ahmed, S., Bhatti, J. A., Samiullah, T. R. and Husnain, T. (2016). Biosafety Assessment of 20 Locally Developed Transgenic Sugarcane. J. Anim. Plant Sci. 26(4)

PHYSICAL PROGRESS REPORT OF THE PARB PROJECT NO. 193 (01-06-2010 TO 31-05-2017)

GENETIC IMPROVEMENT OF SUGARCANE FOR HERBICIDE AND BORER RESISTANCE

TEAM LEADER

DR. MUHAMMAD ZAFFAR IQBAL

AGRICULTURAL BIOTECHNOLOGY RESEARCH INSTITUTE, FAISALABAD

FINAL PHYSICAL PROGRESS REPORT FOR PARB CGS PROJECT # 193 (Physical progress from 01-06-2013 to 31-05-2017)

A. Basic Information

1.	Name of the project	Genetic Improvement of Sugarcane for Herbicide and Borer Resistance
2.	Project No.	193
3.	Total Project cost	22.350 Million Rupees
4.	Total project duration	Five years (June 1 st , 2010 to May 31 st , 2015)
5.	Funds released so far	
6.	Project commencement Date	June 1 st , 2010
7.	Name of the Team Leader	Dr. Muhammad Zaffar Iqbal
	with designation	Director Agricultural Biotechnology Research Institute, Faisalabad.

Output activity	Description	Planned Completion date	Achievement indicator as planned	Achievements	Reason for deviation if any
Output-1	Pilot scale multiplication/propagation of herbicide tolerant Sugarcane CVs SPF 213 and SPF-234.	31-05-2013	One lac seed sets of two Herbicide tolerant sugarcane lines for field trials will be available	More than one Lac seed sets of sugarcane containing CEMB-GT gene were produced from 2 Kanals of SPF-213 and 1 Kanal 9 marlah of SPF-234 planted at ABRI, AARI, Faisalabad.	

					sets was the unavailabili ty of Biosafety permission by NBC.
Activity-1	Sugarcane Plantlets of cultivars SPF 213 and SPF-234 delivery from CEMB containing CEMB- GT Gene	15-07-2011	1000 calli of each of the two sugarcane cultivars SPF-213 and SPF-234 containing GT Gene received from CEMB	1000 calli of sugarcane cultivars SPF-234 received and 34 test tube containing callus of sugarcane variety SPF-213 received on 27-09-2011.	
Activity-2	In-vitro multiplication and acclimatization of Sugarcane plants containing CEMB-GT Gene	31-05-2013	10000 Plantlets of cultivars SPF 213 and CPF 246 will be available for green house/tunnel evaluation.	 20000 plantlets of sugarcane variety SPF-213 and SPF-234 available in test tubes. 10000 plantlets of sugarcane cultivars SPF-213 and SPF-240 shifted in the field. 	
Activity-3	Sugarcane Sets delivery to SRI containing CEMB-GT Gene for field trial.	31-05-2013	One Lac Seed sets of sugarcane containing CEMB-GT Gene will be delivered to SRI for Field trial.	1- 30000 plantlets of sugarcane cultivars SPE-213 and SPF-234 available in the test tubes. 2- 1949 plantlets of sugarcane cultivars of SPF-213 in polythene bags and 20 plants SPF-234 in pots available and ready to transplants in field. 3- 120 fully grown plants of SPF-234 are	72 thousand sets, 24352 sets were transferred to SRI for field trial. However, after these field trials SRI did not to take the remaining

		available in the field.	ABRI. The
		Each plants have	reason for
		average has six tillers	not taking
		and about six sets.	the
		Total numbers of sets	remaining
		of SPF-234 are	sets was the
		120x6x6=4320.	unavailabili
		4- More than one Lac 72	ty of
		thousand seed sets of	Biosafety
		sugarcane containing	permission
		CEMB-GT gene were	by NBC.
		produced from 2	
		Kanals of SPF-213 and	
		1 Kanal 9 marlah of	
		SPF-234 planted at	
		ABRI, AARI,	
		Faisalabad. Almost	
		24352 sets were	
		delivered to SRI for	
		field trial.	

DR. M. ZAFFAR IQBAL TEAM LEADER/PROJECT NO. 193 DIRECTOR AGRICULTURAL BIOTECHNOLOGY RESEARCH INSTITUTE, FAISALABAD

PHYSICAL PROGRESS REPORT OF THE PARB PROJECT NO. 193 (01-06-2013 TO 31-05-2017)

GENETIC IMPROVEMENT OF SUGARCANE FOR HERBICIDE AND BORER RESISTANCE

TEAM LEADER

MR. MUHAMMAD MUNIR

SUGARCANE RESEARCH INSTITUTE, FAISALABAD

FINAL REPORT OF THE PARB CGS PROJECT 193

(From 10.10.2013 to 31.05.2017)

A. Basic Information

1.	Name of the project	Genetic Improvement of Sugarcane for Herbicide and Borer Resistance
2.	Project No.	193
3.	Total Project cost	Rs. 22.350 million
4.	Total project duration	60 months
5.	Funds released so far to SRI, Faisalabad	2.220 million
6.	Project commencement Date	01-06-2010
7	Project extension period	01.06.2015 to 31.05.2017
8	Name of the Team Leader with designation	Mr. Muhammad Munir, Assistant Entomologist/Team Leader, SRI, Faisalabad

B. Physical Research Achievements

Output/ Activity	Description	Planned Completion date	Achievement Indicator as planned	Achievements (Please attach data in brief as annexure if activity completed)	Reasons for deviation if any
Output-1	Sugarcane lines HSF-240, SPF- 234, SPF-213 and CPF-246 with CEMB BT and GT gene will be	31.05.2015	Confirmed transgenic sugarcane lines HSF-240, SPF- 234, SPF-213 and CPF-246	 Entries of transgenic sugarcane variety HSF-240 and CPF-246 cane setts were received from CEMB against herbicide and borer tolerance, respectively in month of Oct 2013. Entries of two transgenic varieties HSF-240 and SPF-213 cane setts were received from ABRI, 	

ready for approval	with tolerance to	Faisalabad in the month of Oct 2013, tolerant
		· · · · · · · · · · · · · · · · · · ·
as variety	borer/herbicide	against herbicide (glyphosate)
		- Transgenic varieties i.e., HSF-240, SPF-213, and
		CPF-246 were sown in three separate non-
		replicated experiments against their tolerance
		character (BT/GT gene) at SRI Faisalabad in the
		months of Oct 2013
		- Seed of 23 transgenic clones of HSF-240 & SPF-
		213 having GT gene were received from ABRI on
		March 17, 2014 and had been sown in field
		- Glyphosate @ 1900 ml/acre was applied to
		herbicide tolerant HSF-240 dated April 22, 2014.
		All the transgenic events showed poor
		performance compared to non-transgenic
		plants . The same outcomes/findings were endorsed
		by PARB monitoring team comprising of Dr.
		Hafeez Ahmad Sadaqat and Abdul Rehman in their
		visit on May 10, 2014
		visit on way 10, 2014

	Testing of CEMB BT and GT gene against borer/herbicide tolerance in sugarcane lines in different		Data on the performance of transgenic	receive were Researche record application application application area. Internation a san canes damage.	one (61) entries of ed from CEMB Lah sown in the research Institute, Faisal ecommended inputs when the season ation. The data on the led twicely during one month interval from the At harvest time code damage % age where a splitted long was observed and ring table.	arch area labad on 11 were give on except dead hear February & com all entriduring Decays recorded by selected ongitudinall	0.2013. These of Sugarcane 1.10.2013. All n to the crop insecticide of the way as a March 2014 es sown in the ember, 2014, diby collecting canes. These y and borar
Activity-2	sugarcane growing areas at 8 locations in autumn and	31.05.2017	versions of selected varieties in comparison with non-	S. #	Entry Name	Dead- heart %age	commulat tive internode damage
	spring seasons in		transgenic versions of these	1	2L / 3	2.10	2.23
	south, central and		versions of these varieties	2	2L / 6	2.85	6.18
	northern Punjab		varieties	3	2L / 8	5.27	6.25
	in addition to SRI,			4	3L/3	9.28	2.09
	Faisalabad and			5	3L / 4	6.25	5.69
	SRS, Khanpur			6	4L/2	2.68	2.60
				7	4L / 7	3.22	2.44
				8	4L / 8	9.73	4.45
				9	5L / 1	14.08	4.82
				10	5L / 5	9.20	1.45
				11	6L / 2	4.96	4.76
				12	6L / 3	3.10	5.17
				13	6L / 5	6.57	2.18
				14	7L / 2	16.23	6.85

	15	7L / 7	15.99	6.58	
	16	8L / 4	7.76	2.4	
ſ	17	9L / 6	7.25	5.00	
	18	CPF 246 (non-transgenic)	2.46	7.78	

It is clear from the table that no entry was found free of dead heart and internode damage. These seventeen entries were re-sown in research area of Sugarcane Research Institute, Faisalabad during spring 2015 in varying lines. Dead heart % age data was recorded in May, 2015 and is being presented in the following table:

Sr.#	Dead heart	Internode damage (%)		Cumulative internode
	(%)	Stem	Root	damage (%)
		borer	borer	
1	9.13	8.57	3.67	12.24
2	10.73	9.79	4.49	14.29
3	8.61	6.95	3.82	10.77
4	8.42	8.02	3.78	13.06
5	9.42	9.92	5.41	15.39
6	10.12	10.88	4.55	15.42
7	10.73	8.36	7.36	15.73
8	10.59	10.84	3.68	14.53
9*	9.89	9.35	4.11	13.45
(Control)				

^{*=} Non transgenic

- All entries showed dead hearts at early stage and internode damage at crop maturity.
- Conclusively it is reported that no resistant against herbicide & borers were found in transgenic sugarcane entries.

Muhammad Munir Assistant Entomologist /Team Leader PARB Project No. 193 SRI, Faisalabad.